H2Pr	第14卷 第4期	8	7	6	5	A	陵镜数区	
17.09	128. P. P. 0. 86. 62	29.71	88.35	86.15	33.54		$\mathbb{Z}\mathbb{F}_6$	
88.88	44.26 41.90		44,67	· 05. [4	34,63	24.68		
03.30 CH	掺铈(Ce)	铌酸锶	钡 (Baa	$sr_{1-x}N$	b_2O_6) 自	自晶中	best	
AL 98	X 80.10 80.00 X	又光 束兼	禺合、放	女大的	研究		e2i	
。此时 出,最	徐怀方	金元望	气体。 ³ 八一	何雪梅	唐元汾	张雁行	: 两个面都 1. 倍率	4
	(上海师范:	大学物理系) (中	国科学院	上海硅酸盐	上研究所)	先以双杨	

提要:报道从同一激光器出射的两束光在 Co-SBN 单晶中相交耦合后一波被另一波放大的实验,并进行了初步的理论分析。从耦合强度对光束在晶体中交角的关系算出 Co-SBN 单晶中截流子浓度为 4.5×10¹⁶/cm³ (室温下);从光耦合时能量的流动方向确定载流子带电的符号为正。比较了不同偏振态、不同波长、不同掺杂量及不同光强比时的耦合情况。

Investigation of two laser beam coupling and amplification in Ce-doped SBN single crystals

Xu Huaifang, Jin Yuanwang

(Physics Department, Shanghai Teachers' University, Shanghai)

He Xuemei, Tang Yuanfen, Zhang Yanxing

(Shanghai Institute of Ceramics, Academia Sinica, Shanghai)

Abstract:The experiment of a laser beam amplified by the other after both beams crossing a Ce-doped (0.1Wt%) strontium barium niobate ($Ba_{w}Sr_{1-w}Nb_{2}O_{6}$ or SBN, x=0.48) crystal is reported and preliminary theoretical analysis is given. The density of mobile charges in Ce-SBN is calculated to be 4.5×10^{16} cm⁻³ (at ambient temperature). The sign of mobile charges determined from the energy flow direction is positive. Couplings at different polarizations, different wavelengths and different doping amounts are compared.

迄今为止,在可见光范围中除了 BaTiO₈ 以外, 铌酸锶钡 (SBN) 或掺铈的铌酸 锶钡 (Ce-SBN) 或许是一种具有最大光致折射率 及光耦合效率的晶体。用它制成具有超过 1 的位相共轭反射率的反光镜及单向环形振荡 器的实验已有报道^[33]。 但对于 SBN 晶 体光 耦合的性能并未完全认识。 例如,为了计算

该晶体的位相共轭反射率必须知道它的光致 折射率 n₁,以及如何找出 SBN 中 Ba 及 Sr 的最佳配比以使它具有最大的 n₁。我们从双 光束耦合实验求得 Ce-SBN 中光致载流子密 度,从而算出 n₁ 及推算该晶体在双光束耦合 中的其它一些属性。

收稿日期: 1986年3月10日

· 220 ·

图 1 晶体 Ce-SBN 中双光束耦合实验装置 DP1、DP2-可移动衰减板; BS-分束器

在如图1所示的实验安排中,一束线偏振连续激光(氩激光或氮-氖激光,在可见波段,毫瓦量级)经分束器分束后,以一定的夹角在单晶掺铈的铌酸锶钡(Oe-SBN)中再次相会(此单晶经过极化处理,并不在单晶上施加外电场,22×10×1.78mm,110切割, c轴平行于22mm一边,通光方向厚约1.78mm,钡含量 *a*=0.48,含 CeO₂:0.1% 重量)。当光束交叉通过晶体后,光束1将被放大,光束2将衰减(除了吸收以外)。当 *c*轴反指时,光能耦合方向亦反转(即光束1减弱,光束2放大)。

、光放大的实验结果

1. 时间特性

图 2 给出双光束耦合放大的时间特性。 在实验过程中,光束 1 始终照射着晶体。 光束 2 在 t₁、t₂……等时刻被引进晶体,与光 束 1 相交;并在 t₁、t₂……等时刻切断射向晶

Ce: 0.1Wt%, 晶体厚 0.17cm; 3—e 光, Ce: 0.05 Wt%, 晶体厚 0.2cm

体的光路。光束1和光束2均未聚焦,它们 的直径约为5mm。此两光束的坐标关系如 图3所示。从图2可以看出,光从相交到放 大至0.7 I_{imax} 值约需0.5秒时间,此时间随 $(\alpha - \beta)$ (见图3)的不同而有所不同。

2. 耦合强度与光束交角的关系

令 I_{10} 和 I_{20} 分别代表光束1 和光束2 进入晶体前的光强, I'_1 代表不存在光束2 时 光束1 通过晶体后的光强, I'_1 代表存在光束 2 且耦合达到稳定时光束1 通过晶体后的光 强。令 $\Delta I_1 = I'_1 - I'_1$, $\Delta I_1 / I'_1$ 称为耦合强 度。在 $I_{10} \approx I_{20}$ 的情况下,耦合强度与光束 交角(从而光栅矢量 $K = 2\pi/\Lambda$, $\Lambda = \lambda / [n \cdot 2\sin(\frac{\alpha - \beta}{2})]$)之间的关系如图4所示。

. 221 .

3. 耦合强度与光强比之间的关系

 $I_{10} \neq I_{20}$ 时,令 $\gamma = I_{20}/I_{10}$,不同的 γ 将导致不同的耦合强度。其关系如图 5 所示。

二、分 析

在晶体 Ce-SBN 中双光束发生耦合的原因是两光束在晶体中相交时形成了折射率光栅,而此光栅则是由于所谓"光致折射率效应 (Photorefractive effect)"形成的。

一旦在晶体中形成折射率光栅也就发生 光耦合。这是可以通过解耦合方程得到解释 的。

令光束1、光束2的光电场方程分别 为:

$$\boldsymbol{\varepsilon}_{1} = \frac{1}{2} \boldsymbol{A}_{1} \exp[i(\omega t - \boldsymbol{K}_{1} \cdot \boldsymbol{r}_{1})] + C.C_{o}$$
$$\boldsymbol{\varepsilon}_{2} = \frac{1}{2} \boldsymbol{A}_{2} \exp[i(\omega t - \boldsymbol{K}_{2} \cdot \boldsymbol{r}_{2})] + C.C_{o}$$

此二波相交于晶体,在慢变化包迹近似 (SVEA)下,可写出下列耦合方程^[2] $2c/\omega \cdot \cos\theta_1 \cdot dA_1/dz = -in_1e^{-i\phi_1}A_2^*A_1A_2/I_0$ $2c/\omega \cdot \cos\theta_2 \cdot dA_2/dz = -in_1e^{i\phi_1}A_2A_1^*A_1/I_0$ (1)

式中 ϕ_1 是折射率光栅相对于光电场干涉条 纹移动的相位角,现载流子带正电,它就等于 $\pi/2$ 。其中的 n_1 由下式给出:

 $n_{I} = -r_{eff} n_{0}^{3} E_{p} E_{d} / (E_{p} + E_{d}), \qquad (2)$ 而 $E_{d} E_{p}$ 分别为

$$E_d = mK_BTK/e_s$$

 $E_p = eP_d/eK_{0_0}$

式中: K_B 为玻耳兹曼常数, $K = |K_1 - K_2|$ = $2\pi/\Lambda$, $\Lambda = \lambda / n \cdot 2 \sin\left(\frac{\alpha - \beta}{2}\right)$, $m = 2\varepsilon_1 \cdot \varepsilon_2^* / I_0$ 为调制度, $I_0 = I_{10} + I_{20}$, P_a 为材料中载流子的密度, ϵ 为材料的相对介电常数。

 ϵ 与电场方向有关。这里所述的载流子 产生的静电场方向与*K*平行,即平行于c轴,故 ϵ 应该用 ϵ_{8} ;对于 SBN 晶体, ϵ_{8} = 511^[33]。

在 SBN 晶体中,有效电光系数 reff 有如 下的关系^[3]:

 $r_{eff} = r_{13} \sin [(\alpha + \beta)/2];$ (3a) 对于 e 光,

Teff

 $= \{ n_e^4 r_{33} \sin \alpha \cdot \sin \beta$

 $+2n_e^2n_0^2r_{42}\cos^2[(\alpha+\beta)/2]$

$$+n_0^4 r_{13} \cos \alpha \cdot \cos \beta \}$$

 $\times \sin\left[\left(\alpha+\beta\right)/2\right]/n_e n_{0o}^3 \qquad (3b)$

当 (α+β)/2=90° 且 α≈β≈90° 时,对于 E 光有:

$$r_{eff} \approx (n_{e}/n_{0})^{3} \cdot r_{33o}$$
(4)
把(4)式代入(2)式得:
$$n_{I} \approx -n_{e}^{3} r_{33} E_{p} E_{d} / (E_{p} + E_{d})_{0}$$
(5)

. 222 .

再令

 $E = E_p E_d / (E_p + E_d)$, (6) 并把 E_p 和 E_d 值代入,经过整理,得到:

$$E = \frac{K_B T}{e} m \frac{K}{[1 + (K/K_0)^2]}$$
(7)

式中,

$$K_0 = (P_d e^2 / \epsilon \epsilon_0 K_B T)^{1/2}$$
(8)

将(5)、(6)代入(1),得到:

 $2c/\omega \cdot \cos\theta_{1} \cdot dA_{1}/dz = n_{e}^{3}r_{33}EA_{2}^{*}A_{1}A_{2}/I_{0},$ $2c/\omega \cdot \cos\theta_{2} \cdot dA_{2}/dz = -n_{e}^{3}r_{33}EA_{2}A_{1}^{*}A_{1}/I_{0}$ (9)

若 $\theta_1 = \theta_2 = \theta$,同时 令 $B = n_e^3 r_{33} E \omega / c \cos \theta$,则上式变为:

$$2dA_1/dz = BA_2^*A_1A_2/I^0, \qquad (9.1)$$

 $2dA_2/dz = -BA_2A_1^*A_1/I_{00}$ (9.2) 将(9.1)式乘 A_1^* 后与(9.1)的共轭复式乘 A_1 后的式子相加: (9.1)× A_1^* +(9.1)*× A_1 ,即: $2A_1^* \cdot dA_1/dz + 2A_1 \cdot dA_1^*/dz$

 $= A_1^* B A_2^* A_1 A_2 / I_0 + A_1 B A_2 A_1^* A_2^* / I_0,$ 也即:

 $2d(A_1A_1^*)/dz = 2BA_1A_1^*A_2A_2^*/I_{00}$ 现令 $A_1A_1^* = I_1, A_2A_2^* = I_2,$ 即得:

 $dI_1/dz = BI_1I_2/I_{00}$ (10.1) 类似地处理 (9.2)式得.

 $dI_2/dz = -BI_1I_2/I_{00}$ (10.2)

从(10.1)式和(10.2)式可以看出,随着 z的增大, I_1 将增大[(10.1)式右边大于 零], I_2 将减小[(10.2)式右边小于零]。这 就解释了光耦合中的放大现象。同时也证明 了我们在列方程(1)时所假定的 $\phi = \pi/2$ 是 符合实际情况的。因此,载流子符号对 SBN 晶体而言是正的。

从(9)式我们可作进一步的分析。当 θ_1 和 θ_2 都很小时,它们的余弦近似地等于1。 因此,耦合主要由 $n_I(=-r_{eff}n_0^3 E)$ 决定;当 晶体给定后,主要由 D决定。而E 的大小 受到下列两个方面的制约:

其一是 E 必须满足泊松方程

$$\nabla \boldsymbol{E} = \rho / \epsilon \epsilon_{00} \tag{11}$$

在载流子电荷场中, E 仅与 a 有关(见图 3), 所以有:

$$\nabla \boldsymbol{E} = \frac{\partial \boldsymbol{E}}{\partial x} \cdot \boldsymbol{i} \approx E / \frac{\Lambda}{2} = 2E / \Lambda_{\circ}$$

式中 $\frac{\Lambda}{2}$ 是光感应的正负电荷层间的距离,它 等于光栅间隔 Λ 的一半^[1]。另外, $\rho = P_a \cdot e_o$ 把这些关系代入(11)式得

$$2E/\Lambda = P_d \cdot e/\epsilon\epsilon_0,$$

或光束交叉角增大)而减小。

或 $E \cdot K = \pi P_a \cdot e / \epsilon \epsilon_0$ 。 (12) 由于 P_a 是存在着上限的,因而当 P_a 达到极 大值后 E 将随 K 的增大(即光栅常数增大,

对 *E* 的另一个制约是(7)式。 若将(7) 式对 *K* 求导数,可以证明当 *K* = *K*₀ 时 *E* 为 极大,即耦合强度达到极大。所以,从图 4 的 $K \sim \frac{\Delta I_1}{I_1}$ 的曲线峰值处找到对应的 *K* 就是 *K*₀。从图 4 可见, *K*₀=0.22 $\frac{n\omega}{c}$ =6.4× 10⁴/cm,代入(8) 式(以 n_e =2.2734、 λ =488 nm、*T*=283 K 计)得:

 $P_d \approx 3.04 \times 10^{16} / \text{cm}^3$

这就是 Ce-SBN 单晶中当 CeO₂ 含量是 0.1% 重量时的载流子浓度。从(7)式可求 出 $E=7.8 \times 10^4$ V/m,它就是光致折射晶体 Ce-SBN 中由光感应出的能产生电光效应的 最大静电场值。另外,从(5)式可求出 Ce-SBN 中最大的 n_I 为 1.19 × 10⁻⁴。

方程(10.1)和(10.2)的解为:

$$I_{1}=I_{0} / \left[1 + \frac{1}{\gamma} \exp(-BZ)\right];$$

$$I_{2}=I_{0} / \left[1 + \gamma \exp(BZ)\right]_{\circ}$$
(13)

式中, $\gamma = I_{20}/I_{100}$

当 λ =488×10⁻⁹m, Z=1.78×10⁻³m (此为晶体厚度), θ ≈90°时,(13)式中的 BZ =28,exp(-BZ)=6.9×10⁻¹³≈0,exp(BZ) =1.45×10¹²。将这些结果代入(13)式,得: $I_1 \approx I_0$; $I_2 \approx 0$, (14) 这个结果并不与实验相符。原因是方程(1) 中没有计入晶体的吸收,而 Ce-SBN 中光的

. 223 .

1 责在载流子电荷扬中, 题仅与 # 有关(见图 3),

	$P_a(10^{16} \cdot \text{cm}^{-3})$	E(V/m)	nI	ne	no	ϵ_{\perp}	€#*	$r_{33}(10^{-12}\text{m/V})$	$r_{42}(10^{-12} \mathrm{m/V})$
BaTiO ₃	1.3	1.2×10^{5}	$\leq 7.58 \times 10^{-4}$	2.43	2.49	4300	106	28	820
Ce-SBN	3.04	7.8×10^{4}	1.19×10^{-4}	2.27	2.31	气情	551	130[3]	6.3[4]

* BaTiO₈的 n₁ 是根据文献[5], 当 α=168°, β=160°, B 取最大值 1.2×10⁵ V/m⁽¹⁾时算得(依据(3)式及(2)式)。 ** Ce-SBN 中的 ε₄(即 ε₈)和 ε₁(即ε₁, ε₂) 是相对于 Ba 含量 α=0.48 而言; 且为低频值。 n₀, n_e 是对蓝绿光波段而言 (BaTiO₈ 同样如此)。

吸收是很强烈的。如果以 $I = I_0 e^{-\alpha z}$ 来描写 吸收的话,则 $\alpha \approx 10$ /cm,且与光强有关。其 次,在晶体中光强与Z有关;因此调制度m也不是一个常数(但偏离1不很大)。更符合 实际情况的理论计算,有待今后的工作。

忽略晶体吸收时,解(14)式,也可写成

$$\frac{\Delta I_{1}}{I'} \approx \frac{I_{1}'' - I_{10}}{I_{10}},$$
$$\frac{\Delta I_{1}}{I_{1}} \approx \frac{I_{20}}{I_{10}} = \gamma_{o}$$
(15)

这结果,反映了光束强度比 γ 愈大, $\frac{\Delta I_1}{T_1}$ 亦愈大,这在一定程度上与实验相符(见图 5)。

表 1 列出 Ce-SBN 与 BaTiO₃ 的参数, 由上表可得到一个重要推论: Ce-SBN 晶 体的光致折射率变量 n₁ 与著名晶体 BaTiO₃ 中的相应值有同一数量级,因此估计 Ce-SBN 将会有很多类似 BaTiO₃ 的特性出现, 而且 Ce-SBN 晶体有一个很大的优点就是它 能接受几乎垂直于它表面(当该表面平行于 *e* 轴时)的光入射而获得大的耦合。Ce-SBN 的强吸收可通过降低 Ce 的含量来减小它;当 CeO₂ 含量从 0.1% 降到 0.05% 重量时,吸 收系数由 10/cm 降到 6.9/cm (对 488 nm 而 言),而载流子浓厚没有降低。

三、不同条件下的光耦合

当 λ =632.8 nm 时,类似的实验可求出 $K_0\approx 2.3\times 10^4$ /cm,从而可求出 $P_a=0.58\times 10^{16}$ /cm³。可见,这时晶体中被光所激发的 载流子浓度大大减小。因此 632.8 nm 的光 耦合,比起 488 nm 的光耦合要弱得多。当 使用 488 nm 的 o 光时,从图 4 可见,耦合也 大大减弱。这不仅是因为(3)式中所表示的 对于 o 光是 r_{13} 在有效电光系数 r_{eff} 中起作 用,而 $r_{13} \approx \frac{1}{20} r_{33}$ (在 SBN 中)相对说来小 了很多;而且 o 光电场方向与光栅矢量 K 垂 直,这也不利于电荷沿 K方向移动和扩散。 当 CeO₂ 的含量减少至 0.05% 重量 时(但厚 度为 2 mm),由图 4 可见,耦合非但不减弱, 而且还加强。当光束 1 和光束 2 不是对称配 置而是让晶体从对称配置的位置转过一个小 角度时,往往能使耦合加强,这可能是由于光 束耦合的有效距离加大所致。

这里介绍的可见波段中毫瓦(甚至是微 瓦)量级的连续波在 Ce-SBN 中的放大耦合 实验,很容易被用来作相干图象增强器、信息 处理器(如相乘、卷积)、共轭放大反射器、环 形单向振荡器等器件。

但是由于双光束耦合时的光束相对放大 ΔI₁/I₁并不是一个常量而是与γ即 I₂/I₁有 关(几乎成线性关系,见图5(a)),因而放大后 的相干象中明暗的对比与放大前相比将发生 严重失真。这个问题可能在 BaTiO₃中也同 样存在^{G3}。

参考文献

- [1] Robert A. Fisher; "Optical Phase Conjugation" Academic Press, New York, 1983, pp. 422, 425.,
- [2] A. Yariv; Opt. Lett., 1981, 6, No. 11, 519.
- [3] Baruch Fisher et al.; Appl. Phys. Lett., 1982,40, No. 10, 863.
- [4] P. V. L. Lenzo et al.; Appl. Phys. Lett., 1967, 11, No. 1, 23.
- [5] Jeffrey O. White et al.; Appl. Phys. Lett., 1982, 40, No. 6, 450.
- [6] F. Laeri et al.; Opt. Commun., 1983, 47, 387.

大图圣白

即: